15TH INTERNATIONAL VIRTUAL CONFERENCE O GREENHOUSE GAS CONTROL TECHNOLOGIES 15TH INTERNATIONAL VIRTUAL CONFERENCE ON

ean Solvent Flow Rate (L/Nm³ Flue Gas)

Negative emission by high CO₂ capture ratio of CO₂ capture plant

Hirofumi Kazuno^a, Takashi Nojo^a, Takashi Kamijo^b, Shimpei Kawasaki^b,Hiroshi Tanaka^c, Takuya Hirata^c and Tatsuya Tsujiuchi^c a The Kansai Electric Power Co., Inc. b Mitsubishi Heavy Industries Engineering, Ltd. c Mitsubishi Heavy Industries, Ltd.

1. Introduction

- The Kansai Electric Power Co., Inc. (Kansai EPCO) and Mitsubishi Heavy Industries, Ltd. (MHI) have developed the highly-efficient post-combustion CO₂ capture technology known as the KM CDR Process[™] since 1990. After successfully delivering 13 commercial CO₂ Capture Plants across the world. Kansai EPCO and MHI continue to improve the KM CDR Process[™].
- Achieving negative emission by higher CO₂ capture ratio is very important to help mitigate global warming. Negative emission is achieved when the CO₂ concentration of the treated gas released from the CO_2 capture plant is lower than the atmospheric CO_2 concentration of 400 ppm.

• This study examines the impact of capture ratio on the plant specifications and compares the Base case at 90% capture ratio and Negative emission case at 99% or higher with Gas Turbine (G/T) flue gas conditions by pilot verification testing and design study using MHI's proprietary simulator.

2. Pilot Verification Testing

2.1 Test Conditions

Table 2.1 Test conditions at Kansai EPCO/MHI pilot plant		
	KM CDR Process [™]	
Capture ratio (%)	85 - 99.98	
Flue gas rate (Nm ³ /hr)	730 - 750	
CO ₂ concentration (mol%)	3.4	
CO ₂ capacity (tonne/day)	1.0 - 1.2	
CO ₂ product pressure (bar)	Without Compression	
Absorption Packing Height	Constant	
www.ghgt.info		

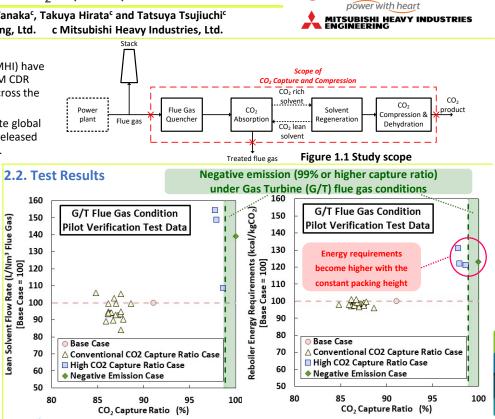


Figure 2.1 Lean solvent flow rate

Figure 2.2 Reboiler energy requirements

15 - 18 MARCH 2021

🔼 Kansai Electric Power

GREENHOUSE GAS CONTROL TECHNOLOGIES

Negative emission by high CO_2 capture ratio of CO_2 capture plant

Hirofumi Kazuno^a, Takashi Nojo^a, Takashi Kamijo^b, Shimpei Kawasaki^b,Hiroshi Tanaka^c, Takuya Hirata^c and Tatsuya Tsujiuchi^c a The Kansai Electric Power Co., Inc. b Mitsubishi Heavy Industries Engineering, Ltd. c Mitsubishi Heavy Industries, Ltd.

3. Design Study 3.1 Study Conditions

Table 3.1 Study Conditions Negative Base case emission case Capture ratio (%) 90 99.5 Flue gas rate (Nm³/hr) 3,000,000 3,000,000 CO₂ concentration (mol%) 4.7 4.7 CO₂ capacity (tonne/day) 5.950 6.580 CO₂ product pressure (bar) 150 150 Relative absorption 100 100 - 150 packing height (% as m)

4. Conclusions

- Negative emission by 99% higher CO₂ capture ratio using the KM CDR Process[™] was actually confirmed in pilot verification tests with gas turbine (G/T) flue gas conditions.
- The increased steam consumption per unit captured CO_2 for Negative Emission case with 99.5% capture of CO_2 was significantly mitigated by increasing absorption packing height and operating parameter adjustment in the simulation.

www.ghgt.info

 Table 3.2 Main design specifications and steam consumption (Scale against base value: 100)

		Base case	Negative emission case	
			Case 1	Case 2 ^{*1)}
CO ₂ capacity (tonne/day)		5,950	6,580	6,580
Flue Gas Quencher	Diameter	100	100	100
CO ₂ absorber	Diameter	100	100	100
	Absorption packing H	100	100	150
Regenerator	Diameter	100	126	108
CAPEX (expected) per unit captured CO ₂		100	Slightly Increase	Increase
Lean solvent rate per unit captured CO ₂		100	162	94
Reboiler steam per unit captured CO ₂		100	138	104
OPEX (expected) per unit captured CO ₂		100	Increase	Slightly Increas

*1) Operating parameter adjustment case.

3.2 Study Results

Kansai Electric Power power with heart MITSUBISHI HEAVY INDUSTRIES

OLOGIES 15 - 18 MARCH 2021

